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Rotation-induced phase transition in a spherical gravitating system
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Due to the infinite range and singularity of the gravitational force, it is difficult to directly apply the standard
methods of statistical physics to self-gravitating systems, e.g., interstellar grains, globular clusters, galaxies,
etc. Unusual phenomena can occur, such as a negative heat capacity, unbounded mass, or the gravothermal
catastrophe where the equilibrium state is fully collapsed and the entropy is unbounded. Using mean field
theory, we investigate the influence of rotation on a purely spherical gravitational system. Although spherical
symmetry nullifies the total angular momentum, its square is finite and conserved. Here we study the case
where each particle has specific angular momentum of the same maghiiv@erigorously prove the exis-
tence of an upper bound on the entropy and a lower bound for the energy. We demonstrate that, in the
microcanonical and canonical ensembles, a phase transition occursl ddenbelow a critical value. We
characterize the properties of each phase and construct the coexistence curve for each ensemble. Possible
applications to astrophysics are considered.
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[. INTRODUCTION environment, the only equilibrium state is completely col-
lapsed[5].

Because of the large population of some stellar systems, It is clear that for systems occurring in nature the short
such as galaxies and globular clusters, it is natural to believeange singularity is artificial, e.g., real stars have finite radii
that maximum entropy principles should be central to theirthat are not breached by collisions unless a cluster is very old
understanding. Although their populations are much smallef2]. Since the lack of an entropy bound is caused by the
than those of typical galaxies, globular clusters are the syssingularity in the force, regularizing the potential in some
tem of choice for theoretical investigation because, in conmanner could result in radically different thermodynamics. It
trast with galaxies, their relaxation times are substantiallywas first conjectured by Lynden-Bell and Wood that, if the
less than the age of the univelidg2]. Observations of their particles possess a hard sphere core, not only should an en-
density profiles suggest that there are two varieties distintropy maximum exist, but a phase transition could occur as
guished by the presence of a condensed ¢&r8], com-  well under the appropriate conditiofi8]. This was investi-
monly referred to as a core-halo structure. At issue is th@ated by a few authors using an approximate form of mean
possibility that the clusters can exist in different thermody-field theory, in which a local pressure due to the short range
namic phases. repulsion is combined with a continuum Vlasov description

Unfortunately the role of thermodynamics and statistical[ 1] of a gravitational system. Employing equations of state of
physics as tools for understanding the structure and evolutioimcreasing accuracy for the local pressifife-11], respec-
of gravitational systems has not been clearly determinedively), the conjecture was verified within the limitations of
Both the infinite range and short range singularities of thehe approximations. At a sufficiently low energy in the mi-
Newtonian interaction result in technical barriers that are dif-crocanonical ensembI®CE) or temperature in the canoni-
ficult to overcome. These include an un-normalizable densitgal ensembléCE), a transition to a more centrally concen-
[4] and a divergent partition functiofb]. Historically the trated phase is predicted. An open question is whether this,
infinite range of the gravitational force, and the associatear a similar transition, can account for the existence of the
problem of escape, was dealt with by theorists by artificiallydistinct globular cluster families mentioned earlier. An alter-
confining the system in a spherical bjgk6]. Even with this  native mean field formulation was recently carried out for a
restriction, the thermodynamics is not completely managespherical system in which the effect of a different regulariza-
able due to the lack of a global entropy maximum at fixedtion, constructed by approximating the Newtonian potential
mass and energ}7,8] which precludes the existence of a as a truncated series of spherical Bessel functions, was ex-
stable equilibrium state. A state of arbitrarily large entropyplored directly in the Vlasov limif12]. It will be interesting
can be constructed in the isolated system by concentrating see if a similar thermodynamics is also predicted by this
sufficient mass in the system center, a phenomenon known imodel.
the astronomy literature as the “gravothermal catastrophe” It is important to note that the nature of the gravitational
[8]. When the energy is above a critical value, howevertransition differs strongly from our everyday experience with
metastable states yielding local entropy maxima are availabléchemical” systems characterized by short range interac-
to the systenf4,8]. On the other hand, it has been rigorously tions. Here there is no thermodynamic limit as such. We do
proven that if the system is open to energy exchange with thaot find the system in distinct, coexistent phases separated
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spatially by a sharp boundary. Further, a jump in temperatureier constraint, and a three-dimensional system consisting of
occurs at the transition in the CE, and stable states witpoint particles, all in the mean field limit. It is surprising that
negative heat capacity exist just above the transition in théhe gravothermal catastrophe was still possible in each en-
MCE. These features, and others, are elucidated in greatéemble. Apparently fixind , or its average is not sufficient
detail elsewherd6,11]. They are shared with other model to prevent mass from reaching the system center.
systems that possess a purely attractive interaction potential In the present work we go one step further; i.e., we endow
[13]. each particle or shell with a fixed value of the square of the
In order to put these ideas on firmer ground, in the las@ngular momentum?. This establishes a centrifugal barrier
few years a model system consisting of concentric, sphericdh the system which resists collapse. In the following we first
mass shells was investigated in our group using both mea#efine the system. We then use mean fidlthsov) theory to
field theory and dynamical simulation. The shells are irrotaformulate the system thermodynamics and derive a differen-
tional, have infinitesimal thickness, and interact only througHtial equation for the local gravitational potential energy.
their mutual gravitational attraction, i.e., they simply passThis, in turn, is used to obtain the local system density. We
through each other on contact. As in the earlier studies, théen prove unequivocally that, fof+0, a lower bound for
effective one-dimensional systefthe only coordinate is the the energy and upper bound for the entropy always exist.
shell radiug was restricted to lie within a spherical box. In Next we investigate the system behavior in the MCE and CE
addition, the singularity was shielded by the inclusion of afor different values ofi* and energy or, respectively, tem-
hard inner barrier of, say, radias Preliminary stages of the perature, by employing numerical integration. We show that
investigation included a study of the ergodic properties of dbelow a critical value, salf, a phase transition is possible in
pair of shells[14] and the time scale for relaxation to equi- both the CE and MCE, where here as well the numerical
librium [15]. Because of the simplicity of the model, it was value oflﬁ depends on the choice of ensemble, and we in-
possible to formulate the mean field theory exactly and solverestigate the system behavior in each phase. In the Conclu-
the resulting nonlinear differential equation for the densitysion we will discuss how this simple model, and some ex-
profile with numerical accuradyl6,15. It was also possible tensions, may have astrophysical significance.
to simulate the system dynamically for long times, well be-
yond the time required to reach equilibrium in most situa- Il. FORMULATION OF THE MODEL
tions[16,15. The system was studied in the microcanonical
and canonical ensembles, and a restricted version of the The mean fieldor Vlasoy limit is constructed from the
grand canonical ensemhl&CE). When the screening radius regular Hamiltonian system o particles, mas#, and en-
afalls below a critical value, , mean field theory predicts a €rgyE, by taking the constrained limii—c, with M andE
phase transition in the MCE and CE but not in the GCE forheld constant. The system is then uniquely and completely
the particular choice of average mass. It is important to notélescribed by the single-particle distribution function in posi-
that the numerical value of, depends on the choice of tion and velocity,f(r,v,t) [1,20]. For our model system of
ensemble. The simulations confirmed the theoretical predicconcentric, infinitesimal, rotating mass shells, each shell is
tions when the influence of finite size scaling was taken intssigned the same magnitude of angular momentum per unit
accoun{17-19. In addition to confirming the predictions of mass/, in units where the moment of inertia isr. Ignor-
mean field theory, unanticipated information concerning botting any internal coordinates, the radial motion of each shell
temporal and positional correlations was extracted from thés fully characterized by, v, andl, wherer is the radial
simulations, which further demonstrated the difference becoordinate and is the radial velocity. Thus, in the mean
tween gravitational and chemical systefi§]. field limit, the stationary system is completely described by
A second open question concerns the uniqueness of regthe probability density functiorfi(r,v). The system is con-
larization as a mechanism for preventing the formation of dined in a spherical box with<b. For convenience we em-
singular, collapsed, core, i.e., gravothermal catastrophe. Iploy units whereM =G=b=1.0 where, as usual is the
this work we wish to consider a different mechanism foruniversal gravitational constant.
inducing a phase transition in a gravitational system. From Let us consider a confined system in the mean field limit
symmetry considerations it is clear that for a spherical syswith the following Hamiltonian density:
tem of point particles moving in three dimensions the total
angular momentum vanishes. However, it is also well estab- 1, 12
lished that, in the mean field limit, the sum of the squares of H= PVt o2 +@(r),
the angular momenta of the constituent partic&l§,E L,,is
an integral of the motioff1]. Since a particle with fixed, where the gravitational potentidl is a solution of the Pois-
nonvanishing, angular momentum cannot reach the systeson equation, antf is a constant. We can think of several
center, it was thought that rotational effects may be able taypes of spherical system for which the radial motion is rep-
prevent the development of a singular central density thatesented by the above Hamiltonian. For example, the three-
would otherwise occur, thus preventing the gravothermal cadimensional point mass system with fixed magnitude of the
tastrophe. To investigate this possibility, recently we ex-angular momentum has the same Hamiltonian per unit mass.
tended both the microcanonical and canonical ensembles tlternatively, we can think of a system of infinitesimally
include the second integrfl9]. We examined both rotating thin rotating shells if we fix the magnitude of each shell’s
shell systems of differing dimensidwithout the inner bar- angular momentum. We can derive the thermodynamics of
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this family in the mean field limit. We will show that an subject to two constraints,

extremum for the entropy is realized whémexp(—H).

This model is a special case of the more general problem of f f(r,v)do = p(r)
spherically symmetric, self-gravitating systefa8], but here ' p

12 is independently fixed for each particle. This latter condi-

tion also ensures that the system energy is bounded fromnd

below for anyl2. We will show that the minimum energy

configuration is realized physically when the mass is at rest i f f v2f(r,v)dv dr=K.
and concentrated at a unique radius.

Here p(r) denotes fixed densityafter the velocity depen-
A. Entropy bound dence is integrated outind K denotes the kinetic energy.
In this section we prove the existence of an upper bound\fter introducing two Lagrange multipliers(r) and 3, we
on entropyS[ f], where the densitfis assumed to satisfy the have
constraints of normalization and mean total energy. This L
bound depends on the ener@y and angular momentum 5(S[f]_f A(r)p(r)dr—BK | =0,
magnitudel. As a part of our proof we estimate the mean 0
potential energy from below in terms bfln the next section
we calculate critical values of the entropy functional andor
investigate their stability. First we will show that there is a
unique f(r,v) that provides an extremum for the entropy f f [—1—Inf—\(r)—2Bv2]6f dv dr=0.
S f] with respect to the constraints of normalization and the

mean total energy: . . .
ean fotal energy Therefore, extremal solutiong(r,v) to this variational

J J @ problem have Gaussian distributions in velocity:
fdvdr=1, 1
(P(r,v):e—l—x(r)—ﬁuzlz_
1 1?2 @ ,
f f f §U2+ ?Jr > dvdr=E, 2) From the two constraints above we have
_ ~ B2
where, in mean field theong takes the forni1,6] ¢(r.v)=vpl2me p(r),
and, if we normalizefp(r)dr=1,
S=—ffflnfdvdr 3 .
K=—. (6)
in units wherekg, the Boltzmann constant, is unity. In the 2p

above it is implicitly assumed that the integration over radial
velocity is over the whole real line, while the integration
over position is restricted to the unit interval. For conve-

It is easy to show that this extremal solution is the maxi-
mum; that is, for allf(r,v) satisfying the constraints above

nience, unless otherwise indicated, we will adhere to thid'© have
convention throughout the remainder of the paper. =Y o]
From the standard variational treatmg&h8] we know that '
f(r,v) takes the form Indeed, consider a one-parameter family of density functions

fi=@+th, with fo(r,v)=¢(r,v) andf,(r,v)=f(r,v). If
, (4)

1 12
f(r,v)=CeX;{—B(§vz+Ez+<b)
f h(r,v)dUZJ'vzh(r,v)dv:O,
where « and B are the Lagrange multipliers, an@

=exf —(a+1)]. The probability density function, which is then for all O<t<1 functionsf,(r,v) will satisfy the same
identical to the linear mass density function in our system ofconstraints ag(r,v). Define

units, is then
2 F()=9f]-9f].
P(r):f fduerx;{—B?—BQJ), (5 Since F(0)=0, F'(0)=0, and F"(t)<0 for all 0O<t<1,

F(t) is a decreasing function df and F(t)<0. Thus the

whereA=C\27/B. inequality S(f )<S(¢) is proved.

We start by studying the following variational problem  Next we study the conditions satisfied by the dengity)

for the entropyS that provides an extremum for the entropy of the system

subject to the constraints of normalization, EL, and of the
S f]—extr, total potential energyl. We have shown thdtis of the form

066131-3



PETER KLINKO, BRUCE N. MILLER, AND IGOR PROKHORENKOV PHYSICAL REVIEW B3 066131

f(rv)= Me_ﬁﬁ/zp(r), B. Energy bound
An essential step in bounding Ind/is to find a lower
then, after integrating out and asserting Eq6) we obtain  bound onlIl, the total, mechanical potential energy of our

two constraints om(r): system, in terms of fixetl From the formula ford(r),
1 (r 1 (1 1
f p(r)ydr=1, @(r)?——fp(z)dz——f p(z)dz=——.
rJo rJ, r
2 @ Therefore,
j p(?-F? dr=1II. (7) 2 ® 2 1
The gravitational potentialb(r) can be expressed in

terms of the density from the solution of the Poisson equa-

. : S L ; On the int 0,1] the functi =12/2r—1/2r h
tion for a spherical mass distribution. This is usually written n the interval0,1] the functiong(r) ' a

a minimumg(212) = —1/812 if 0<I<v2/2, andg(1)=(I2

in the form —1)/2 if I>v2/2. Therefore,
AD(r)=47Gp,(r) 1 )
_ _ _ _ BT if 0<I< >
wherep,(r) is the mass density per unit volume. Since our =
system is effectively one dimensional, here and in &, -1 V2
p(r)y=4mr?p,(r) is the linear mass density and the Laplace > if I>?_

equation takes the form
Note that the equalities in the estimates are achieved when
2 B p(r) is a & function centered, respectively, et 212 andr
arF g M=pn). ® 1. Thus the estimates are exact. Since kinetic energy is
always non-negative, these estimates also serve to bound the
For simplicity, we select the solution that vanishes at infinitytotal energy of the system from below in the mean field limit.
and, therefore, satisfies the boundary conditidiib)= Since
—MG/b, so that, in our units,

1
1 (r 1p(2) EZEJFH' (1)
<D(r)=——f p(z)dz—f LS o)
rJo roZ it is easy to obtain the following estimates:
Now, from Eqgs.(3) and(4), 1 _ o)
In 2E+W if Osls7
82 —=<
S[f]=—f[We P p(n)] ng= V2
IN(2E+1—-1%)  if |>7

X In[ VBl2me P**2p(r)]dv dr
Finally we have the following bounds for the entropy:

=—f p(D)Inp(r)dr—InyBi2m+3. (10)

1 1 _ V2
C'+§|n 2E+m if OS|$?
Our goal is to bound the entropy from above in terms of  S(f(r,v))<
fixed E andl. Since for any positive functiop(r) we have C'+=In(2E+1-12) if |>Q
2 2
1 1
- fo p(Dinp(rydr<max —-zinz)< -, Thus, for this system, gravothermal catastrophe is not pos-

sible.

it is enough to bound the value of Indfrom above, because
IIl. DIFFERENTIAL EQUATION FOR THE DENSITY

Sf]=C'+ Elnl All of the important thermodynamic functions can be ex-
2B’ pressed in terms of the temperature and density. Therefore,
to investigate the system properties, it is essential to deter-
where mine the local density(r) with numerical precision. The

Poisson equatior{8) provides a second order differential
, 11 1 equation for the gravitational potential which, along with Eq.
C'=—+zIn27+ .
e 2 2 (5), becomes
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3.5

25

2 FIG. 1. B, vs ¥ for different values off3
A \ whenl?=0.1. 8=2.0,1.0,0.5,0.1,0.0rom top
15 to bottom) in our dimensionless units. As we can
\ see, multiple solutions are possible f85(V)
. —-pB=0.
0.5 N
0
-10 8 6 -4 2 0 2 4
Wo
d( ,do A 2 ® dy —
dar\"ar | TASR T BB ar A Yo,
or, in a more convenient form, dv vy
ar T (13
d /[ ,d¥ 12 . N . -
ar r ar =A"ex —ﬂ?—\lf , (12 In practice, we use numerical integration to solve the initial
value problem in this formiEq. (13)] with
whereA’=AB and V= pB®d. Once the scaled gravitational ¥'(0)=0,
potentialW is known, it is easy to construct the density from
Eq. (5). From symmetry and consistency with our definition V(0)=W,.

of the potential, we have to solve EJ.2) with the boundary
conditions ¥’ (0)=d¥/dr|,_,=0 and¥(1)=—p3. Thus, However the initial value problem above is not equivalent to
at first glance, Eq(12) looks like an ordinary, nonlinear, the original problem because there we have the additional
second order differential equation with conditions specifiedconditiony(1)= 3 arising from the normalization gs. For
on each boundary of the unit interval. However, there is aarbitrary ¥,
further complicating feature brought about because the den-
sity must be properly normalized. It is easy to see that this
imposes the following condition oA’ and hencel:

which means that

ket
exp —B532— r=p=—- :
0 2r dri _, y(1)=pB1(Vq,7).

ThusA' is a functional of¥". We will solve Eq.(12) with the  Thus, constructing those solutions that satisfy the condition
following approach. First we will relax the conditions on y(1)=g is equivalent to findingVy such thatB,;(Vg,y)
W(1) andA’ [or, equivalently ¥’ (1)]; then we will convert — =0 for a giveny, or, alternatively,?, 3 pair.
Eqg. (12 to an initial value problem, integrate it numerically,  In practice, we numerically integrated the coupled equa-
and, finally, reassert the conditions. tions (13), using the Bulirsch-Stoer algorithf21] for differ-
Notice that we can always add a constantMtowithout  ent values of¥, and y. In Fig. 1, we present plots of
changing the physics. This will not alter the value of the 8,(W,,vy) versusW¥, for a family of fixed values ofy. We
density or entropy, but will shift the total energy by a con- can see from the figure that there is a critical value/afay
stant. Therefore, with no loss of generality, we are free toy., such that, when € y<y,, the curves intersect straight
choose the initial valu&,=V¥(0) such that the normaliza- horizontal lines of fixed3,;= 8 in three points, demonstrat-
tion constant for the densifysee Eq.5)] A=1/8, and[see ing the existence of multiple solutions. In the next section we
Eqg. (12] A’=1. Then, with this convention, and defining will see how they allow the physical system to exist in dif-
BlI?12=1y, it is straightforward to show that the second orderferent thermodynamic phases.
equation(12) can be converted to the following system of In addition to numerically integrating the differential
coupled, first order equations, equations and solving fob , in order to uniquely fixe and

[ ew—w—yriar=pivey, s
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FIG. 2. Entropy vs energgfor a unit mass The plot shows the FIG. 3. Free energy vg (for a unit masg The plot shows the

presence of a microcanonical phase transitio£atl.9 whenl? ~ presence of a canonical phase transition g 0.4 when |2
=5.0x 10 %in our dimensionless units. In fact, the phase transition=9.0x10 3. A phase transition is present in the CE when the
is present in the MCE between a condensed phase, characteristic @arameter? is below the critical valudZ=0.025. Note that the
low energy, and a less condensed phase, characteristic of high evielue of1Z in the MCE is much smaller than in the CE.

ergy, whenl? is less than the critical valug¢=1.1x10* (see also

Fig. 8 below. We also labeled the three distinct solutions above the IV. NUMERICAL RESULTS

transition point for E=2.0. Solution 1 is stable while, from )
Poincarés linear series of equilibria, 2 and 3 are, respectively, lo- We have shown above that for a restricted range of a

cally stable and unstable points. single parameter, € y<y., multiple density profiles can
occur in the system for a singj@|? pair. Corresponding to

F we must determin& ., the shift inW that returns us to the Yc. in €ach ensemble there is a critical valuel dfoelow
boundary condition of the original problem. L8t,(r) de-  Which the system can exist in multiple states. To see how
note the desired potential function that satisfies the originalis translates into a phase transition in different ensembles,
problem with boundary condition?;(1)=— 4. Although We examine the dep(_endence of the entropy on the energy,
W(r) is the solution for the initial value problegi3) men- S=S(E) (microcanonical ensembl@nd the free energy on
tioned abovénow assuming/(1)= 8], it does not necessar- the inverse temperaturé,=F(;3) (canonical ensembjefor

ily satisfy the same boundary condition #(r). Clearly fixed values of the squared angular momentum. We find that

we regain the original with in each ensemble there is a corresponding randé where
multiple thermodynamic states have the same entropy
V(1) =W (1) (1) + W, (1)=W(r)—¥(1)— B (MCE) or free energy(CE). This is seen clearly in Figs. 2
1 - 1 - ’

(MCE) and 3(CE). In the isolated systerfMCE) the state

whereW(1) is obtained from the numerical integration.
For the purpose of numerical evaluation, we also need ta
rewrite the equations for the entropy and energy in terms of

3
the solution of the initial value problen¥. Since adding a \\
constant to the potential shifts the energy per unit mass, bu

has no effect on the entropy, from Ed$), (10), (7), and ? 2
(11) we easily find
1

Inp

s=|nﬂﬂ+%+ﬁf2|—:2pdr+qupdr, °

-1

E=w+E ’ dr+if\lf dr -2
218 2 rT p Zﬁ P , -6.6 -5.6 -4.6 -3.6 -2.6 -1.6 -0.6

Inr

whereW =W (1)+ B is the shift in the scaled gravitational i 4. The linear density profiles of the three distinct solutions
potential. Note that these forms allow us to perform the inqapeled in Fig. 2 wherE=2.0 and|?=5.0x10°5. We see that
tegrations on the fly, i.e., we can carry them out while Wegpoye the transition point the least condensed solution 1 is stable
actually numerically integrate the differential equations, anduhile solution 2 is the most condensézbrresponding to the low
correct those terms that contaifi; and 8 later. Once we  energy phaseand is metastable above the transition point. Solution
have the energy and entropy, it is simple to obtain the Helms is unstable. Note that the linear density must be zero in the system
holz free energy fronkF=E—S/8. center (=0).
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0

1 /
-20
40 P // FIG. 5. The effective potential for the three
distinct solutons when E=2.0 and |2
3 / =5.0x10"° (see Figs. 2 and)4The effective
g» 60 potential profiles are consistent with the corre-
sponding density profiles in Fig. 4. Sin¢& is
/ fixed and solution 1 is less condensed, its mini-
-80 mum in® is the farthest from the center, while
/ 2 solution 3's minimum of® . is the closest to the
center.
-100
-120
-6.5 -5.5 -4.5 -3.5 -2.5 -1.5 -0.5

Inr

with maximum entropy is most stable and there is a jump imary in the energy of extremal entropy solutions numerically,
the derivativeS/9E= B at the transition point, while in the and this lower bound is close te 1/82.
open systen{CE) the state of minimum free energy is most  In equilibrium theory, the location of the phase transition
stable and there is a jump #(BF)/dB=E. Thus the tran- is determined from information concerning a single phase
sition is first order in each case. Where three phases anda the Maxwell equal area constructighi7]. Using our nu-
present, the stability of each phase can be checked using theerical solution for the local density, we are able to follow
technique known as Poincaselinear series of equilibria the “motion” of the system in th&g,E) plane in the MCE
[22,23,19. This method provides a powerful tool for deter- and in the §,T=8"1) plane in the CE for a fixed value of
mining if the extremal solutions are locally stable in the ap-|2<|§. From Figs. 6 and 7, we can determine if Maxwell's
propriate function space. We applied it to confirm that, wherequal area condition holds around the transition point. In the
multiple phases are present, the usual thermodynamic de4CE, we know tha{17]
scription is valid; i.e., there is a globally stable phéasexi-
mum entropy in the MCE or minimum free energy in the
CE), a metastable or locally stable, phdsgnimum entropy AS= BdE
or maximum free energyand an unstable phase. ABCDE

In Figs. 4 and 5 we compare the density profilg) and
the effective potentialb 4=1%2r + ® for each phase at a if the volume is fixed(the Boltzmann constark=1 in our
point in the E,1%)=(2.0,5.0< 10 °) parameter space of the system of units Therefore, if we start and end our integra-
MCE. In each case we choserlifor the abscissa in order to tion at the transition point the integral for the net change of
easily resolve the different structures. The points are labelethe entropy should vanish according to Fig. 4. Now, if we
1, 2, and 3 in Fig. 2 and represent an energy value just aboveok at Fig. 6 and evaluate the integral by breaking it up into
the transition point. Note that the curve labeled 1 is the high
energy stable phase, 2 has lower energy and is metastabl~ 4
and 3 is unstable. Each density profile is peaked at a differen
value ofr, sayr,,. In Fig. 4 we see that the density profile of
the low energy metastable phase 2 is most strongly peaked ¢ 3
the smallest value af,, (not visible in the figure because of

the choice of scale—see abgwend the high energy stable 28 -
phase has the smallest peak at the largest value. Although th 2 £ =
unstable phase has the lowest energy, its structure is inter {5 Bw /A \D
mediate between the others. As a result of &) .there is a /
natural correspondence between the behaviop(@) and ! /
®4(r) which we observe in Fig. 5. 0.5

We proved in Sec. Il that, for givelf, there is a lower 0 /

bound on the energy. For the case whére 0.5, themini- 0 0.05 01 015

mum potential energy is-1/82. In the state of minimum B

energy discussed in Sec. Il, mean field theory predicts that

all of the mass is located af,, the location of the minimum FIG. 6. Plot of energy vs inverse temperature when

of ®q(r), andp(r)=o(r —ry). The minimum energy was =5.0x10 °. The transition point obtained from the Maxwell equal
verified in the numerical solutions. We found a lower bound-area construction is the same as that in Fig. 2.
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4 Note that, in contrast with the canonical ensemble, in the
25 MCE the phase transition region is in the positive energy
range.
3 B
T
25 f— E/ V. CONCLUSION

In earlier work[16], we showed that gravothermal catas-
15 D trophe can be prevented in a shell system by the introduction
of an inner reflecting barrier. However, in the more general
description of three-dimensional self-gravitating systems
05 [15], in which eitherL,, the sum of the squares of the an-
gular momentum, or its mean was fixed, we showed that
gravothermal catastrophe is still present. The centrifugal bar-
s rier was not sufficient to prevent collapse. Here we were able
to present a model that does not require modifying the New-
FIG. 7. Plot of temperature vs entropy whéh=9.0x 10 3, tonian potential or imposing an inner boundary in order to
The transition point obtained from the Maxwell equal area con-ensure the existence of a global maximum of the entropy.
struction is the same as that in Fig. 3. The model is a simplified version of the general problem, in
which the magnitude of the angular momentum is assigned
four parts according to the figure, we see that the areas ghe same value for each particle. In the mean field limit, the

ABC and CDE are equal. For the canonical ca$eg. 7), existence of an upper bound of the entropy and an energy
minimum was rigorously proved, and the thermodynamics of
AF = _f sdT the system was developed in both the microcanonical and

ABCDE canonical ensembles. In each ensemble the system undergoes

a first order phase transitionlifs below a critical value. This

If A.andB are at the transition point, the net change of thecorresponds to the critical point, and the critical valug isf
free energy is zero along the pa#BCD. Similarly, if we  shown to be different in each ensemble. Plots of entropy
evaluate this integral by breaking it into four pied€%y. 7),  versus energyFig. 2) and free energy versus inverse tem-
we can see that the areasABC and CDE should be equal. perature (Fig. 3 clearly show the presence of multiple
We can determine the transition eneigly for the MCE and  phases, one of which is stable. Applying the method of
the transition temperaturg, for the CE by inspecting the Poincarés linear series of equilibria, it turns out that, of the
plots of S(E) (Fig. 2 andF(B) (Fig. 3), and we were able to remaining solutions, one of them is a saddle point, while the
numerically verify the equal area relation for each ensemblether is locally stable.
with high accuracy. We also constructed coexistence curves for both the CE

In Figs. 8 and 9, we present the phase diagrams of thand MCE, which show the conditions for each phase to exist
system in the MCE and the CE. In each case, there are thrge terms of the parametéf and E (MCE) or F (CE). Note
distinct regions corresponding to a condensed phase, a qugrat we cannot see phase transitions for negative energies in
siuniform phase, and a fluidlike phase wHér-12. We also  the MCE. In this ensemble the low energy phase is more
indicate the regions where a metastable phase exists accorekntrally condensethowever, note that the density function
ing to Figs. 2 and 3. As we mentioned earlier, the criticalis always zero in the centerSimilar considerations apply to
value oflZ is different in each ensemble, in fd@>15.z.  the canonical ensemble, where the low temperature phase is

6

5\

\ Metastable regions
N\
\% Less Condensed phase
w 3
7\\ Critical point
\

D——

Condensed phase

FIG. 8. Phase diagram for the MCE. The co-
existence curve between the two stable phases is
in the middle. The system is in the less condensed
phase above the transition curve, and more con-
densed below it. The lines above and below the
transition curve define the region where meta-
stable solutions also exigsee Fig. 2 When |2
>12 only one phase is present.

|

2x10% 7x10°® 1.2x10*
Iz
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—

07 \ /// /

Condensed phase Critical point

0.6 /
o os ey
0ol / // Less condensed phase
/4

0.1 V

0.001 0.006 0.011 0.016 0.021 0.026
2
|

FIG. 9. Phase diagram for the CE. The middle
line corresponds to the transition point, and the
high temperature phase is the less condensed
phase. Wher12>I§ only one phase is present.
The lines above and below the transition line de-
fine the region of metastable solutiofsee Fig.

3).

more centrally condensed. The conditions where the energgegion in which a globular cluster blends into the background
has a minimum were also investigated numerically and idensity of the parent galaxy. The effective size of this region
was found that the mass distribution was strongly localizedvill no doubt be influenced by dynamical processes, such as
within the accuracy of our code. Of course we cannot obtairthe periodic traversal of the galactic difR]. The case for
the & function as the numerical solution of a differential fixed angular momentum is even harder to justify, but the
equation. We rigorously proved in Sec. Il that the energy iscontrast with the previously studied ensembles in which only
bounded from below, and this energy minimum representshe total value ofL, is constrained, either exactly or in the
the case where all the particles have vanishing radial velocitynean[19], may be insightful. It suggests that, under circum-
components and are concentrated in a shell with radius stances where there is a separation of time scales such that
=212 (in our system of unitsif |<v2 andr=1 (the outer energy exchange among particles is nearly complete, but an-
boundary otherwise. The latter result also justifies the claimgular momentum exchange has hardly occurred, the discus-
that if we fix the magnitude of the angular momentum wesion provided here may have relevance. Of course, the as-
have a lower bound in the energy and an upper bound for theumption that all angular momenta are equal, or
entropy which eventually prevents the gravothermal catastreapproximately equal, is highly unlikely, but it may roughly
phe. This model system is an outgrowth of our previousdescribe the “precollapsed” state of a globular clugt}.
work and clearly illustrates how the thermodynamics of awhat we have shown here is thatlif mixing has not oc-
spherical self-gravitating system is influenced by the mannecurred the existence of distinct thermodynamic phases seems
in which angular momentum is distributed among the condikely. However, the alternative situation where low angular
stituent particles. momentum stars have collapsed to form a dense core while
Starting with the original conjecture of Lynden-Bell and stars with nonzero angular momentum persist for long times
Wood[8], all of the gravitational phase transitions studied toin a diffuse halo may represent the approximate equilibrium
date concern highly idealized systems. All of them involveconfiguration of a “postcollapse” cluster. In future work we
some type of confining outer boundary. In addition, someplan to investigate the thermodynamics of this situation, as
require removal of the short range singularity by a hand  well as carry out accurate dynamical simulations of rotating
soft) sphere or, in the case considered here, an artificial corshell systems to investigate the relevant relaxation processes.
straint on the angular momentum of each body. Thus it is

difficult to argue from alposition of strength that any of these ACKNOWLEDGMENTS
models have astrophysical relevance. Probably the most con-
vincing case for applicability was made by Statlal. [11] The authors are grateful for the support of the Research
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