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Rotation-induced phase transition in a spherical gravitating system
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Due to the infinite range and singularity of the gravitational force, it is difficult to directly apply the standard
methods of statistical physics to self-gravitating systems, e.g., interstellar grains, globular clusters, galaxies,
etc. Unusual phenomena can occur, such as a negative heat capacity, unbounded mass, or the gravothermal
catastrophe where the equilibrium state is fully collapsed and the entropy is unbounded. Using mean field
theory, we investigate the influence of rotation on a purely spherical gravitational system. Although spherical
symmetry nullifies the total angular momentum, its square is finite and conserved. Here we study the case
where each particle has specific angular momentum of the same magnitudel. We rigorously prove the exis-
tence of an upper bound on the entropy and a lower bound for the energy. We demonstrate that, in the
microcanonical and canonical ensembles, a phase transition occurs whenl falls below a critical value. We
characterize the properties of each phase and construct the coexistence curve for each ensemble. Possible
applications to astrophysics are considered.
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I. INTRODUCTION

Because of the large population of some stellar syste
such as galaxies and globular clusters, it is natural to bel
that maximum entropy principles should be central to th
understanding. Although their populations are much sma
than those of typical galaxies, globular clusters are the s
tem of choice for theoretical investigation because, in c
trast with galaxies, their relaxation times are substantia
less than the age of the universe@1,2#. Observations of their
density profiles suggest that there are two varieties dis
guished by the presence of a condensed core@2,3#, com-
monly referred to as a core-halo structure. At issue is
possibility that the clusters can exist in different thermod
namic phases.

Unfortunately the role of thermodynamics and statisti
physics as tools for understanding the structure and evolu
of gravitational systems has not been clearly determin
Both the infinite range and short range singularities of
Newtonian interaction result in technical barriers that are
ficult to overcome. These include an un-normalizable den
@4# and a divergent partition function@5#. Historically the
infinite range of the gravitational force, and the associa
problem of escape, was dealt with by theorists by artificia
confining the system in a spherical box@4,6#. Even with this
restriction, the thermodynamics is not completely mana
able due to the lack of a global entropy maximum at fix
mass and energy@7,8# which precludes the existence of
stable equilibrium state. A state of arbitrarily large entro
can be constructed in the isolated system by concentra
sufficient mass in the system center, a phenomenon know
the astronomy literature as the ‘‘gravothermal catastroph
@8#. When the energy is above a critical value, howev
metastable states yielding local entropy maxima are avail
to the system@4,8#. On the other hand, it has been rigorous
proven that if the system is open to energy exchange with
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environment, the only equilibrium state is completely co
lapsed@5#.

It is clear that for systems occurring in nature the sh
range singularity is artificial, e.g., real stars have finite ra
that are not breached by collisions unless a cluster is very
@2#. Since the lack of an entropy bound is caused by
singularity in the force, regularizing the potential in som
manner could result in radically different thermodynamics
was first conjectured by Lynden-Bell and Wood that, if t
particles possess a hard sphere core, not only should an
tropy maximum exist, but a phase transition could occur
well under the appropriate conditions@8#. This was investi-
gated by a few authors using an approximate form of m
field theory, in which a local pressure due to the short ran
repulsion is combined with a continuum Vlasov descripti
@1# of a gravitational system. Employing equations of state
increasing accuracy for the local pressure@9–11#, respec-
tively!, the conjecture was verified within the limitations o
the approximations. At a sufficiently low energy in the m
crocanonical ensemble~MCE! or temperature in the canon
cal ensemble~CE!, a transition to a more centrally concen
trated phase is predicted. An open question is whether
or a similar transition, can account for the existence of
distinct globular cluster families mentioned earlier. An alte
native mean field formulation was recently carried out fo
spherical system in which the effect of a different regulariz
tion, constructed by approximating the Newtonian poten
as a truncated series of spherical Bessel functions, was
plored directly in the Vlasov limit@12#. It will be interesting
to see if a similar thermodynamics is also predicted by t
model.

It is important to note that the nature of the gravitation
transition differs strongly from our everyday experience w
‘‘chemical’’ systems characterized by short range inter
tions. Here there is no thermodynamic limit as such. We
not find the system in distinct, coexistent phases separ
©2001 The American Physical Society31-1
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spatially by a sharp boundary. Further, a jump in tempera
occurs at the transition in the CE, and stable states w
negative heat capacity exist just above the transition in
MCE. These features, and others, are elucidated in gre
detail elsewhere@6,11#. They are shared with other mod
systems that possess a purely attractive interaction pote
@13#.

In order to put these ideas on firmer ground, in the l
few years a model system consisting of concentric, spher
mass shells was investigated in our group using both m
field theory and dynamical simulation. The shells are irro
tional, have infinitesimal thickness, and interact only throu
their mutual gravitational attraction, i.e., they simply pa
through each other on contact. As in the earlier studies,
effective one-dimensional system~the only coordinate is the
shell radius! was restricted to lie within a spherical box. I
addition, the singularity was shielded by the inclusion o
hard inner barrier of, say, radiusa. Preliminary stages of the
investigation included a study of the ergodic properties o
pair of shells@14# and the time scale for relaxation to equ
librium @15#. Because of the simplicity of the model, it wa
possible to formulate the mean field theory exactly and so
the resulting nonlinear differential equation for the dens
profile with numerical accuracy@16,15#. It was also possible
to simulate the system dynamically for long times, well b
yond the time required to reach equilibrium in most situ
tions @16,15#. The system was studied in the microcanoni
and canonical ensembles, and a restricted version of
grand canonical ensemble~GCE!. When the screening radiu
a falls below a critical valueac , mean field theory predicts
phase transition in the MCE and CE but not in the GCE
the particular choice of average mass. It is important to n
that the numerical value ofac depends on the choice o
ensemble. The simulations confirmed the theoretical pre
tions when the influence of finite size scaling was taken i
account@17–19#. In addition to confirming the predictions o
mean field theory, unanticipated information concerning b
temporal and positional correlations was extracted from
simulations, which further demonstrated the difference
tween gravitational and chemical systems@15#.

A second open question concerns the uniqueness of r
larization as a mechanism for preventing the formation o
singular, collapsed, core, i.e., gravothermal catastrophe
this work we wish to consider a different mechanism
inducing a phase transition in a gravitational system. Fr
symmetry considerations it is clear that for a spherical s
tem of point particles moving in three dimensions the to
angular momentum vanishes. However, it is also well es
lished that, in the mean field limit, the sum of the squares
the angular momenta of the constituent particles,( l i

2[L2 , is
an integral of the motion@1#. Since a particle with fixed
nonvanishing, angular momentum cannot reach the sys
center, it was thought that rotational effects may be able
prevent the development of a singular central density
would otherwise occur, thus preventing the gravothermal
tastrophe. To investigate this possibility, recently we e
tended both the microcanonical and canonical ensemble
include the second integral@19#. We examined both rotating
shell systems of differing dimension~without the inner bar-
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rier constraint!, and a three-dimensional system consisting
point particles, all in the mean field limit. It is surprising th
the gravothermal catastrophe was still possible in each
semble. Apparently fixingL2 or its average is not sufficien
to prevent mass from reaching the system center.

In the present work we go one step further; i.e., we end
each particle or shell with a fixed value of the square of
angular momentum,l 2. This establishes a centrifugal barrie
in the system which resists collapse. In the following we fi
define the system. We then use mean field~Vlasov! theory to
formulate the system thermodynamics and derive a differ
tial equation for the local gravitational potential energ
This, in turn, is used to obtain the local system density. W
then prove unequivocally that, forl 2Þ0, a lower bound for
the energy and upper bound for the entropy always ex
Next we investigate the system behavior in the MCE and
for different values ofl 2 and energy or, respectively, tem
perature, by employing numerical integration. We show t
below a critical value, sayl c

2, a phase transition is possible i
both the CE and MCE, where here as well the numeri
value of l c

2 depends on the choice of ensemble, and we
vestigate the system behavior in each phase. In the Con
sion we will discuss how this simple model, and some e
tensions, may have astrophysical significance.

II. FORMULATION OF THE MODEL

The mean field~or Vlasov! limit is constructed from the
regular Hamiltonian system ofN particles, massM, and en-
ergyE, by taking the constrained limitN→`, with M andE
held constant. The system is then uniquely and comple
described by the single-particle distribution function in po
tion and velocity,f (r ,v,t) @1,20#. For our model system o
concentric, infinitesimal, rotating mass shells, each she
assigned the same magnitude of angular momentum per
mass,l, in units where the moment of inertia ismr2. Ignor-
ing any internal coordinates, the radial motion of each sh
is fully characterized byr, v, and l, where r is the radial
coordinate andv is the radial velocity. Thus, in the mea
field limit, the stationary system is completely described
the probability density functionf (r ,v). The system is con-
fined in a spherical box withr<b. For convenience we em
ploy units whereM5G5b51.0 where, as usual,G is the
universal gravitational constant.

Let us consider a confined system in the mean field li
with the following Hamiltonian density:

H5
1

2
v21

l 2

2r 2 1F~r !,

where the gravitational potentialF is a solution of the Pois-
son equation, andl 2 is a constant. We can think of sever
types of spherical system for which the radial motion is re
resented by the above Hamiltonian. For example, the th
dimensional point mass system with fixed magnitude of
angular momentum has the same Hamiltonian per unit m
Alternatively, we can think of a system of infinitesimall
thin rotating shells if we fix the magnitude of each shel
angular momentum. We can derive the thermodynamics
1-2
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ROTATION-INDUCED PHASE TRANSITION IN A . . . PHYSICAL REVIEW E63 066131
this family in the mean field limit. We will show that a
extremum for the entropy is realized whenf }exp(2bH).
This model is a special case of the more general problem
spherically symmetric, self-gravitating systems@19#, but here
l 2 is independently fixed for each particle. This latter con
tion also ensures that the system energy is bounded f
below for any l 2. We will show that the minimum energ
configuration is realized physically when the mass is at
and concentrated at a unique radius.

A. Entropy bound

In this section we prove the existence of an upper bo
on entropyS@ f #, where the densityf is assumed to satisfy th
constraints of normalization and mean total energy. T
bound depends on the energyE and angular momentum
magnitudel. As a part of our proof we estimate the me
potential energy from below in terms ofl. In the next section
we calculate critical values of the entropy functional a
investigate their stability. First we will show that there is
unique f (r ,v) that provides an extremum for the entrop
S@ f # with respect to the constraints of normalization and
mean total energy:

E E f dv dr51, ~1!

E E f S 1

2
v21

l 2

2r 2 1
F

2 Ddv dr5E, ~2!

where, in mean field theory,S takes the form@1,6#

S52E E f ln f dv dr ~3!

in units wherekB , the Boltzmann constant, is unity. In th
above it is implicitly assumed that the integration over rad
velocity is over the whole real line, while the integratio
over position is restricted to the unit interval. For conv
nience, unless otherwise indicated, we will adhere to
convention throughout the remainder of the paper.

From the standard variational treatment@18# we know that
f (r ,v) takes the form

f ~r ,v !5C expF2bS 1

2
v21

l 2

2r 2 1F D G , ~4!

where a and b are the Lagrange multipliers, andC
5exp@2(a11)#. The probability density function, which i
identical to the linear mass density function in our system
units, is then

r~r !5E f dv5A expS 2b
l 2

2r 22bF D , ~5!

whereA5CA2p/b.
We start by studying the following variational proble

for the entropyS:

S@ f #→extr,
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subject to two constraints,

E f ~r ,v !dv5r~r !

and

1
2 E E v2f ~r ,v !dv dr5K.

Here r(r ) denotes fixed density~after the velocity depen-
dence is integrated out! and K denotes the kinetic energy
After introducing two Lagrange multipliersl(r ) andb, we
have

dS S@ f #2E
0

1

l~r !r~r !dr2bK D 50,

or

E E @212 ln f 2l~r !2 1
2 bv2#d f dv dr50.

Therefore, extremal solutionsw(r ,v) to this variational
problem have Gaussian distributions in velocity:

w~r ,v !5e212l~r !2bv2/2.

From the two constraints above we have

w~r ,v !5Ab/2pe2bv2/2r~r !,

and, if we normalize,*r(r )dr51,

K5
1

2b
. ~6!

It is easy to show that this extremal solution is the ma
mum; that is, for allf (r ,v) satisfying the constraints abov
we have

S@ f #<S@w#.

Indeed, consider a one-parameter family of density functi
f l5w1th, with f 0(r ,v)5w(r ,v) and f 1(r ,v)5 f (r ,v). If

E h~r ,v !dv5E v2h~r ,v !dv50,

then for all 0<t<1 functions f t(r ,v) will satisfy the same
constraints asf (r ,v). Define

F~ t !5S@ f t#2S@ f #.

Since F(0)50, F8(0)50, and F9(t)<0 for all 0<t<1,
F(t) is a decreasing function oft and F(t)<0. Thus the
inequalityS( f )<S(w) is proved.

Next we study the conditions satisfied by the densityr(r )
that provides an extremum for the entropy of the syst
subject to the constraints of normalization, Eq.~1!, and of the
total potential energyP. We have shown thatf is of the form
1-3
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f ~r ,v !5Ab/2pe2bv2/2r~r !,

then, after integratingv out and asserting Eq.~6! we obtain
two constraints onr(r ):

E r~r !dr51,

E rS l 2

2r 2 1
F

2 Ddr5P. ~7!

The gravitational potentialF(r ) can be expressed i
terms of the density from the solution of the Poisson eq
tion for a spherical mass distribution. This is usually writt
in the form

DF~r !54pGrv~r !

whererv(r ) is the mass density per unit volume. Since o
system is effectively one dimensional, here and in Eq.~5!,
r(r )54pr 2rv(r ) is the linear mass density and the Lapla
equation takes the form

d

dr
r 2

d

dr
F~r !5r~r !. ~8!

For simplicity, we select the solution that vanishes at infin
and, therefore, satisfies the boundary conditionF(b)5
2MG/b, so that, in our units,

F~r !52
1

r E0

r

r~z!dz2E
r

1 r~z!

z
dz. ~9!

Now, from Eqs.~3! and ~4!,

S@ f #52E @Ab/2pe2bv2/2r~r !#

3 ln@Ab/2pe2bv2/2r~r !#dv dr

52E r~r !ln r~r !dr2 lnAb/2p1 1
2 . ~10!

Our goal is to bound the entropy from above in terms
fixed E and l. Since for any positive functionr(r ) we have

2E
0

1

r~r !ln r~r !dr<max~2z ln z!<
1

e
,

it is enough to bound the value of ln 1/b from above, because

S@ f #<C81
1

2
ln

1

b
,

where

C85
1

e
1

1

2
ln 2p1

1

2
.

06613
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B. Energy bound

An essential step in bounding ln 1/b is to find a lower
bound onP, the total, mechanical potential energy of o
system, in terms of fixedl. From the formula forF(r ),

F~r !>2
1

r E0

r

r~z!dz2
1

r Er

1

r~z!dz52
1

r
.

Therefore,

P5E rS l 2

2r 2 1
F

2 Ddr>E rS l 2

2r 22
1

2r Ddr.

On the interval@0,1# the functiong(r )[ l 2/2r 221/2r has
a minimum g(2l 2)521/8l 2 if 0< l<&/2, andg(1)5( l 2

21)/2 if l .&/2. Therefore,

P>H 2
1

8l 2 if 0< l<
&

2

l 221

2
if l .

&

2
.

Note that the equalities in the estimates are achieved w
r(r ) is a d function centered, respectively, atr 52l 2 and r
51. Thus the estimates are exact. Since kinetic energ
always non-negative, these estimates also serve to boun
total energy of the system from below in the mean field lim

Since

E5
1

2b
1P, ~11!

it is easy to obtain the following estimates:

ln
1

b
<H lnS 2E1

1

4l 2D if 0< l<
&

2

ln~2E112 l 2! if l .
&

2
.

Finally we have the following bounds for the entropy:

S„f ~r ,v !…<H C81
1

2
lnS 2E1

1

4l 2D if 0< l<
&

2

C81
1

2
ln~2E112 l 2! if l .

&

2
.

Thus, for this system, gravothermal catastrophe is not p
sible.

III. DIFFERENTIAL EQUATION FOR THE DENSITY

All of the important thermodynamic functions can be e
pressed in terms of the temperature and density. There
to investigate the system properties, it is essential to de
mine the local densityr(r ) with numerical precision. The
Poisson equation~8! provides a second order differentia
equation for the gravitational potential which, along with E
~5!, becomes
1-4
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FIG. 1. b1 vs C0 for different values ofb
whenl 250.1. b52.0,1.0,0.5,0.1,0.01~from top
to bottom! in our dimensionless units. As we ca
see, multiple solutions are possible forb1(C0)
2b50.
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dr S r 2
dF

dr D5A expS 2b
l 2

2r 22bF D
or, in a more convenient form,

d

dr S r 2
dC

dr D5A8 expS 2b
l 2

2r 22C D , ~12!

whereA85Ab and C5bF. Once the scaled gravitationa
potentialC is known, it is easy to construct the density fro
Eq. ~5!. From symmetry and consistency with our definitio
of the potential, we have to solve Eq.~12! with the boundary
conditionsC8(0)[dC/drur 5050 and C(1)52b. Thus,
at first glance, Eq.~12! looks like an ordinary, nonlinear
second order differential equation with conditions specifi
on each boundary of the unit interval. However, there i
further complicating feature brought about because the d
sity must be properly normalized. It is easy to see that t
imposes the following condition onA8 and henceC:

A8E
0

1

expS 2b
l 2

2r 22C Ddr5b5
dC

dr U
r 51

.

ThusA8 is a functional ofC. We will solve Eq.~12! with the
following approach. First we will relax the conditions o
C~1! andA8 @or, equivalently,C8(1)#; then we will convert
Eq. ~12! to an initial value problem, integrate it numericall
and, finally, reassert the conditions.

Notice that we can always add a constant toC without
changing the physics. This will not alter the value of t
density or entropy, but will shift the total energy by a co
stant. Therefore, with no loss of generality, we are free
choose the initial valueC05C(0) such that the normaliza
tion constant for the density@see Eq.~5!# A51/b, and@see
Eq. ~12!# A851. Then, with this convention, and definin
b l 2/2[g, it is straightforward to show that the second ord
equation~12! can be converted to the following system
coupled, first order equations,
06613
d
a
n-
is

o

r

dy

dr
5exp~2C2g/r 2!,

dC

dr
5

y

r 2 . ~13!

In practice, we use numerical integration to solve the ini
value problem in this form@Eq. ~13!# with

C8~0!50,

C~0!5C0 .

However the initial value problem above is not equivalent
the original problem because there we have the additio
condition y(1)5b arising from the normalization ofr. For
arbitraryC0 ,

E
0

1

exp~2C2g/r 2!dr[b1~C0 ,g!, ~14!

which means that

y~1!5b1~C0 ,g!.

Thus, constructing those solutions that satisfy the condi
y(1)5b is equivalent to findingC0 such thatb1(C0 ,g)
2b50 for a giveng,b or, alternatively,l 2,b pair.

In practice, we numerically integrated the coupled eq
tions ~13!, using the Bulirsch-Stoer algorithm@21# for differ-
ent values ofC0 and g. In Fig. 1, we present plots o
b1(C0 ,g) versusC0 for a family of fixed values ofg. We
can see from the figure that there is a critical value ofg, say
gc , such that, when 0,g,gc , the curves intersect straigh
horizontal lines of fixedb15b in three points, demonstrat
ing the existence of multiple solutions. In the next section
will see how they allow the physical system to exist in d
ferent thermodynamic phases.

In addition to numerically integrating the differentia
equations and solving forC0 , in order to uniquely fixE and
1-5
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F we must determineCc , the shift inC that returns us to the
boundary condition of the original problem. LetC1(r ) de-
note the desired potential function that satisfies the orig
problem with boundary conditionC1(1)52b. Although
C(r ) is the solution for the initial value problem~13! men-
tioned above@now assumingy(1)5b#, it does not necessar
ily satisfy the same boundary condition asC1(r ). Clearly
we regain the original with

C1~r !5C~r !2C~1!1C1~1!5C~r !2C~1!2b,

whereC~1! is obtained from the numerical integration.
For the purpose of numerical evaluation, we also need

rewrite the equations for the entropy and energy in terms
the solution of the initial value problem,C. Since adding a
constant to the potential shifts the energy per unit mass,
has no effect on the entropy, from Eqs.~5!, ~10!, ~7!, and
~11! we easily find

S5 ln A2pb1
1

2
1bE l 2

2r 2 r dr1E Cr dr,

E5
~12Cc!

2b
1

1

2 E l 2

r 2 r dr1
1

2b E Cr dr,

whereCc5C(1)1b is the shift in the scaled gravitationa
potential. Note that these forms allow us to perform the
tegrations on the fly, i.e., we can carry them out while
actually numerically integrate the differential equations, a
correct those terms that containCc and b later. Once we
have the energy and entropy, it is simple to obtain the He
holz free energy fromF5E2S/b.

FIG. 2. Entropy vs energy~for a unit mass!. The plot shows the
presence of a microcanonical phase transition atE51.9 whenl 2

55.031025 in our dimensionless units. In fact, the phase transit
is present in the MCE between a condensed phase, characteris
low energy, and a less condensed phase, characteristic of hig
ergy, whenl 2 is less than the critical valuel c

251.131024 ~see also
Fig. 8 below!. We also labeled the three distinct solutions above
transition point for E52.0. Solution 1 is stable while, from
Poincare´’s linear series of equilibria, 2 and 3 are, respectively,
cally stable and unstable points.
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IV. NUMERICAL RESULTS

We have shown above that for a restricted range o
single parameter, 0,g,gc , multiple density profiles can
occur in the system for a singleb,l 2 pair. Corresponding to
gc , in each ensemble there is a critical value ofl 2 below
which the system can exist in multiple states. To see h
this translates into a phase transition in different ensemb
we examine the dependence of the entropy on the ene
S5S(E) ~microcanonical ensemble! and the free energy on
the inverse temperature,F5F(b) ~canonical ensemble! for
fixed values of the squared angular momentum. We find
in each ensemble there is a corresponding range ofl 2 where
multiple thermodynamic states have the same entr
~MCE! or free energy~CE!. This is seen clearly in Figs. 2
~MCE! and 3~CE!. In the isolated system~MCE! the state

n
of

en-

e

-

FIG. 3. Free energy vsb ~for a unit mass!. The plot shows the
presence of a canonical phase transition atb50.4 when l 2

59.031023. A phase transition is present in the CE when t
parameterl 2 is below the critical valuel c

250.025. Note that the
value of l c

2 in the MCE is much smaller than in the CE.

FIG. 4. The linear density profiles of the three distinct solutio
labeled in Fig. 2 whenE52.0 and l 255.031025. We see that
above the transition point the least condensed solution 1 is st
while solution 2 is the most condensed~corresponding to the low
energy phase! and is metastable above the transition point. Solut
3 is unstable. Note that the linear density must be zero in the sys
center (r 50).
1-6
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FIG. 5. The effective potential for the thre
distinct solutions when E52.0 and l 2

55.031025 ~see Figs. 2 and 4! The effective
potential profiles are consistent with the corr
sponding density profiles in Fig. 4. Sincel 2 is
fixed and solution 1 is less condensed, its min
mum inFeff is the farthest from the center, whil
solution 3’s minimum ofFeff is the closest to the
center.
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with maximum entropy is most stable and there is a jump
the derivative]S/]E5b at the transition point, while in the
open system~CE! the state of minimum free energy is mo
stable and there is a jump in](bF)/]b5E. Thus the tran-
sition is first order in each case. Where three phases
present, the stability of each phase can be checked usin
technique known as Poincare´’s linear series of equilibria
@22,23,19#. This method provides a powerful tool for dete
mining if the extremal solutions are locally stable in the a
propriate function space. We applied it to confirm that, wh
multiple phases are present, the usual thermodynamic
scription is valid; i.e., there is a globally stable phase~maxi-
mum entropy in the MCE or minimum free energy in th
CE!, a metastable or locally stable, phase~minimum entropy
or maximum free energy!, and an unstable phase.

In Figs. 4 and 5 we compare the density profiler(r ) and
the effective potentialFeff[l2/2r 1F for each phase at a
point in the (E,l 2)5(2.0,5.031025) parameter space of th
MCE. In each case we chose lnr for the abscissa in order t
easily resolve the different structures. The points are labe
1, 2, and 3 in Fig. 2 and represent an energy value just ab
the transition point. Note that the curve labeled 1 is the h
energy stable phase, 2 has lower energy and is metast
and 3 is unstable. Each density profile is peaked at a diffe
value ofr, sayr m . In Fig. 4 we see that the density profile
the low energy metastable phase 2 is most strongly peake
the smallest value ofr m ~not visible in the figure because o
the choice of scale—see above! and the high energy stabl
phase has the smallest peak at the largest value. Althoug
unstable phase has the lowest energy, its structure is in
mediate between the others. As a result of Eq.~5! there is a
natural correspondence between the behavior ofr(r ) and
Feff(r) which we observe in Fig. 5.

We proved in Sec. II that, for givenl 2, there is a lower
bound on the energy. For the case wherel 2,0.5, themini-
mum potential energy is21/8l 2. In the state of minimum
energy discussed in Sec. II, mean field theory predicts
all of the mass is located atr m , the location of the minimum
of Feff(r), andr(r )5d(r 2r m). The minimum energy was
verified in the numerical solutions. We found a lower boun
06613
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ary in the energy of extremal entropy solutions numerica
and this lower bound is close to21/8l 2.

In equilibrium theory, the location of the phase transiti
is determined from information concerning a single pha
via the Maxwell equal area construction@17#. Using our nu-
merical solution for the local density, we are able to follo
the ‘‘motion’’ of the system in the~b,E! plane in the MCE
and in the (S,T5b21) plane in the CE for a fixed value o
l 2, l c

2. From Figs. 6 and 7, we can determine if Maxwell
equal area condition holds around the transition point. In
MCE, we know that@17#

DS5E
ABCDE

b dE

if the volume is fixed~the Boltzmann constantk51 in our
system of units!. Therefore, if we start and end our integr
tion at the transition point the integral for the net change
the entropy should vanish according to Fig. 4. Now, if w
look at Fig. 6 and evaluate the integral by breaking it up in

FIG. 6. Plot of energy vs inverse temperature whenl 2

55.031025. The transition point obtained from the Maxwell equ
area construction is the same as that in Fig. 2.
1-7
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four parts according to the figure, we see that the area
ABC andCDE are equal. For the canonical case~Fig. 7!,

DF52E
ABCDE

S dT.

If A andB are at the transition point, the net change of t
free energy is zero along the pathABCD. Similarly, if we
evaluate this integral by breaking it into four pieces~Fig. 7!,
we can see that the areas ofABC andCDE should be equal.
We can determine the transition energyEtr for the MCE and
the transition temperatureTtr for the CE by inspecting the
plots ofS(E) ~Fig. 2! andF(b) ~Fig. 3!, and we were able to
numerically verify the equal area relation for each ensem
with high accuracy.

In Figs. 8 and 9, we present the phase diagrams of
system in the MCE and the CE. In each case, there are t
distinct regions corresponding to a condensed phase, a
siuniform phase, and a fluidlike phase whenl 2. l c

2. We also
indicate the regions where a metastable phase exists ac
ing to Figs. 2 and 3. As we mentioned earlier, the critic
value of l c

2 is different in each ensemble, in factl CE
2 . l MCE

2 .

FIG. 7. Plot of temperature vs entropy whenl 259.031023.
The transition point obtained from the Maxwell equal area c
struction is the same as that in Fig. 3.
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Note that, in contrast with the canonical ensemble, in
MCE the phase transition region is in the positive ene
range.

V. CONCLUSION

In earlier work@16#, we showed that gravothermal cata
trophe can be prevented in a shell system by the introduc
of an inner reflecting barrier. However, in the more gene
description of three-dimensional self-gravitating syste
@15#, in which eitherL2 , the sum of the squares of the a
gular momentum, or its mean was fixed, we showed t
gravothermal catastrophe is still present. The centrifugal b
rier was not sufficient to prevent collapse. Here we were a
to present a model that does not require modifying the Ne
tonian potential or imposing an inner boundary in order
ensure the existence of a global maximum of the entro
The model is a simplified version of the general problem,
which the magnitude of the angular momentum is assig
the same value for each particle. In the mean field limit,
existence of an upper bound of the entropy and an ene
minimum was rigorously proved, and the thermodynamics
the system was developed in both the microcanonical
canonical ensembles. In each ensemble the system unde
a first order phase transition ifl is below a critical value. This
corresponds to the critical point, and the critical value ofl is
shown to be different in each ensemble. Plots of entro
versus energy~Fig. 2! and free energy versus inverse tem
perature ~Fig. 3! clearly show the presence of multipl
phases, one of which is stable. Applying the method
Poincare´’s linear series of equilibria, it turns out that, of th
remaining solutions, one of them is a saddle point, while
other is locally stable.

We also constructed coexistence curves for both the
and MCE, which show the conditions for each phase to e
in terms of the parameterl 2 andE ~MCE! or F ~CE!. Note
that we cannot see phase transitions for negative energie
the MCE. In this ensemble the low energy phase is m
centrally condensed~however, note that the density functio
is always zero in the center!. Similar considerations apply to
the canonical ensemble, where the low temperature pha

-

o-
s is
ed

on-
he
a-
FIG. 8. Phase diagram for the MCE. The c
existence curve between the two stable phase
in the middle. The system is in the less condens
phase above the transition curve, and more c
densed below it. The lines above and below t
transition curve define the region where met
stable solutions also exist~see Fig. 2! When l 2

. l c
2 only one phase is present.
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FIG. 9. Phase diagram for the CE. The midd
line corresponds to the transition point, and t
high temperature phase is the less conden
phase. Whenl 2. l c

2 only one phase is presen
The lines above and below the transition line d
fine the region of metastable solutions~see Fig.
3!.
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more centrally condensed. The conditions where the ene
has a minimum were also investigated numerically and
was found that the mass distribution was strongly localiz
within the accuracy of our code. Of course we cannot obt
the d function as the numerical solution of a differenti
equation. We rigorously proved in Sec. II that the energy
bounded from below, and this energy minimum represe
the case where all the particles have vanishing radial velo
components and are concentrated in a shell with radiur
52l 2 ~in our system of units! if l ,& and r 51 ~the outer
boundary! otherwise. The latter result also justifies the cla
that if we fix the magnitude of the angular momentum
have a lower bound in the energy and an upper bound for
entropy which eventually prevents the gravothermal catas
phe. This model system is an outgrowth of our previo
work and clearly illustrates how the thermodynamics o
spherical self-gravitating system is influenced by the man
in which angular momentum is distributed among the c
stituent particles.

Starting with the original conjecture of Lynden-Bell an
Wood @8#, all of the gravitational phase transitions studied
date concern highly idealized systems. All of them invol
some type of confining outer boundary. In addition, so
require removal of the short range singularity by a hard~or
soft! sphere or, in the case considered here, an artificial c
straint on the angular momentum of each body. Thus i
difficult to argue from a position of strength that any of the
models have astrophysical relevance. Probably the most
vincing case for applicability was made by Stahlet al. @11#
for applicability to planet or asteroid formation. In futur
work it may be possible to relate the outer boundary to
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region in which a globular cluster blends into the backgrou
density of the parent galaxy. The effective size of this reg
will no doubt be influenced by dynamical processes, such
the periodic traversal of the galactic disk@2#. The case for
fixed angular momentum is even harder to justify, but t
contrast with the previously studied ensembles in which o
the total value ofL2 is constrained, either exactly or in th
mean@19#, may be insightful. It suggests that, under circum
stances where there is a separation of time scales such
energy exchange among particles is nearly complete, but
gular momentum exchange has hardly occurred, the dis
sion provided here may have relevance. Of course, the
sumption that all angular momenta are equal,
approximately equal, is highly unlikely, but it may rough
describe the ‘‘precollapsed’’ state of a globular cluster@2#.
What we have shown here is that ifL2 mixing has not oc-
curred the existence of distinct thermodynamic phases se
likely. However, the alternative situation where low angu
momentum stars have collapsed to form a dense core w
stars with nonzero angular momentum persist for long tim
in a diffuse halo may represent the approximate equilibri
configuration of a ‘‘postcollapse’’ cluster. In future work w
plan to investigate the thermodynamics of this situation,
well as carry out accurate dynamical simulations of rotat
shell systems to investigate the relevant relaxation proces
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